ENDOPHYTIC NANOPARTICLES: TOWARDS A NEW THERAPEUTIC FUTURE

Abdul Nafeh and Sumaira Mazhar*
Department of Biology, Lahore Garrison University, Lahore
*Corresponding author
Email: smz.mmg@gmail.com

Abstract

A substantial aspect of nanotechnology is the advancement of solid procedures for the joining of nanoparticles. Naturally blended nanoparticles could offer a wide range of uses, including gathering, catalysis, bio-labeling, and so on. In this study, we highlight the microbial world's extravagance, which includes a plethora of endophytic materials as a growing device in the biosynthesis of nanoparticles. The new study is the first of its kind, providing insight into hitherto unknown endophyte applications.

Keywords: Microbial synthesis, Nanoparticles, Endophytes

I. Introduction

Microorganisms produce incredible biodiversity, among which the microbial world has a plethora of endophytic substances involving a vast array of fascinating natural specialties (higher plants) in a variety of unusual settings. It is coined the term endophyte (Gr. endon, inner; phyton, plant), which has since become deeply embedded in the text. Endophytic living things are currently defined as "microorganisms that invade living, inner tissues of plants without causing any immediate, obvious negative consequences" (Stone et al., 2000). Endophyte research is becoming increasingly important due to the abundance of innovative characteristic items that are recognized to have wide uses in the pharmaceutical and farming industries (Strobel and Daisy, 2003). Microorganisms (microscopic organisms, yeast, and organisms) play a key role in toxic metals remediation by reducing metal particles; this was believed to be a fascinating finding, and these organisms were used as nano-factories for nanoparticle synthesis. Nanotechnology involves the biosynthesis of nanoparticles.
Nanoparticles

Nanoparticles are sometimes defined as particles with a diameter of less than 100 nm that exhibit new or enhanced size-subordinate characteristics when compared to larger particles of the same substance. Nanoparticles can be found in the natural environment, for example, as a result of photochemical volcanic activity or as a result of plant development. They have also been created for a long time as a result of burning and food preparation, and, more recently, from car breakdowns (Yuan, 2004). Furthermore, these nanoparticles have several uses in diverse fields, including collecting, catalysis, and bio-labeling (Baker and Satish, 2012). Nanoparticles with exceptional physicochemical and optoelectronic characteristics are of primary importance, whereas metal nanoparticles and semiconductors are also widely used in several fields of research (Shankar et al., 2004; Mandal et al., 2006).

Biological synthesis of Nanoparticles

With the current turn of events and implementation of new innovations, nanoparticles, as well as the role of organisms in bio and green nanoparticle unions, appear to have drawn unequivocal consideration with a view to reformulating novel techniques to combat future threats to human life and the environment. Regular techniques for the combination of nanoparticles are associated with a variety of consequences, such as high prices, health risks from natural pollutants, and so on (Lloyd, 2003; Varshney et al., 2009). As a result, there is an increasing need to develop biomimetic, clean, non-poisonous, and naturally beneficial manufactured techniques for the amalgamation of nanoparticles, and these strategies are being researched. As a result, scientists have turned to spontaneous amalgamation, which allows particles a lot of control over the size of the particles they transport. The primary reason for this could be that procedures developed naturally for the joining of inorganic materials on nano and miniaturized scales have contributed to the emergence of a relatively new and largely unexplored field of research based on the use of microorganisms in the biosynthesis of nanomaterial (Mandal et al., 2006). The ever-increasing need to discover ecological friendly ways for nanoparticle amalgamation has reignited interest in biotransformation as a path to the creation of nanoscale structures. Natural frameworks have a unique ability to manipulate the structure, stage, and nano-structural geography of inorganic precious stones (Cui and Gao, 2003). Table 1 summarizes biogenic synthesis of nanoparticles from different bacteria.
Table 1. Nanoparticle synthesis by different bacteria, their characterization and their biological activities.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Bacteria</th>
<th>Metal (nanoparticle)</th>
<th>Characterization of Nanoparticles</th>
<th>Nano-particle synthesis/screening</th>
<th>Activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enterobacter cloacae (Ism26)</td>
<td>Silver Nanoparticles</td>
<td>FTIR, UV-Vis spectroscopy, X-ray diffraction, Dynamic light scattering</td>
<td>Extracellular bio-synthesis using AgNO₃</td>
<td>Anti-bacterial activity, antifungal activity</td>
<td>El-Baghdady et al., 2018</td>
</tr>
<tr>
<td>2</td>
<td>Bacillus spp.</td>
<td>Silver Nanoparticles</td>
<td>FTIR, UV-Vis spectrometer, X-ray spectroscopy, Dynamic light scattering</td>
<td>Extracellular bio-synthesis using AgNO₃</td>
<td>Anti-bacterial activity, antifungal activity</td>
<td>Das et al., 2014</td>
</tr>
<tr>
<td>3</td>
<td>Saccharomyces boulardii</td>
<td>Platinum Nanoparticles</td>
<td>FTIR, UV-Vis spectrometer, TEM</td>
<td>Extracellular bio-synthesis using Chloroplatic hydrate</td>
<td>Anti-cancer activity</td>
<td>Borse et al., 2015</td>
</tr>
<tr>
<td>4</td>
<td>Serratia marcescens</td>
<td>Silver Nanoparticles</td>
<td>FTIR, X-rays energy dispersive spectroscopy, SEM</td>
<td>Extracellular bio-synthesis using AgNO₃</td>
<td>Anti-bacterial activity, antifungal activity</td>
<td>Lakshmipathy et al., 2013</td>
</tr>
<tr>
<td>5</td>
<td>Serratia marcescens</td>
<td>Gold Nanoparticles</td>
<td>UV-Vis spectroscopy, SEM, TEM, X-rays energy dispersive spectroscopy, Helium Ion Microscopy, Dynamic light scattering</td>
<td>Intracellular/Extrace llular bio-synthesis using Gold (III) chloride trihydrate</td>
<td>Anti-cancer activity</td>
<td>Dozie-Nwachukwu et al., 2017</td>
</tr>
<tr>
<td>6</td>
<td>Serratia marcescens</td>
<td>Bismuth Nanoparticles</td>
<td>UV-Vis spectroscopy, SEM, TEM, Energy dispersive spectroscopy</td>
<td>Extracellular bio-synthesis using Bismuth subnitrate</td>
<td>Anti-bacterial activity, antifungal activity</td>
<td>Nazari et al., 2012</td>
</tr>
<tr>
<td>7</td>
<td>Lactobacillus spp.</td>
<td>Titanium Nanoparticles</td>
<td>TEM, Selected area electron diffraction, X-ray diffraction</td>
<td>Extracellular bio-synthesis using Dihydroxy titanium</td>
<td>Anti-bacterial activity, antifungal activity</td>
<td>Jha et al., 2009</td>
</tr>
<tr>
<td>8</td>
<td>B. selenitireducens</td>
<td>Selenium Nanoparticles</td>
<td>SEM, TEM, UV-visible and Raman spectroscopy</td>
<td>Intracellular/Extrace llular bio-synthesis using Oxyanions selenite, Selenate</td>
<td>Microbial growth inducing (microbial respiration), Microbial</td>
<td>OremLand et al., 2004</td>
</tr>
</tbody>
</table>
traces on extra-terrestrial places i.e. MARS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Paenibacillus spp.</td>
<td>Silver Nanoparticles</td>
<td>Spectrophotometry, TEM, X-ray diffraction</td>
<td>Extracellular biosynthesis using AgNO₃</td>
</tr>
<tr>
<td>10</td>
<td>Pseudomonas aeruginosa</td>
<td>Gold Nanoparticles</td>
<td>UV–vis spectroscopy and fluorescence spectra, TEM</td>
<td>Extracellular biosynthesis using free gold ions</td>
</tr>
</tbody>
</table>

Mechanism for the Production of Nanoparticles

Despite the fact that a large number of microbial species are capable of producing metal nanoparticles, the nanoparticle biosynthesis instrument has yet to be developed. The metabolic unpredictability of suitable microorganisms confounds evaluation, identification of dynamic species in nucleation, and, thus far, metal nanoparticle production. Proteins are the head biomolecules related with the gold nanoparticle mix, according to later considerations. Various experts have hypothesized that microbes release substances that may be responsible for the reduction of metal particles, resulting in the nucleation and growth of nanoparticles. NADH-subordinate reductase is engaged with silver nanoparticles combination by *Fusarium oxysporum*. Be that as it may, the biochemical instrument of metal particle decreases and ensuing nanoparticle development remains unexplored (Sreeju *et al.*, 2016).

Dreadful cleaning processes and a lack of understanding of the equipment are significant drawbacks associated with the production of NPs using tiny organisms. Controlling the form and size of the particles, as well as achieving mono-dispersity in the organization stage, are often encountered problems in the biosynthesis of NPs. It appears that a few key specialized challenges must be overcome before this green bio-based method for mechanical amalgamation of NPs can be considered a viable and serious option. Scaling up for creation level handling is a big problem. Furthermore, robotic perspectives are rarely considered.

The significant perspectives which may be considered all the while of creating all around portrayed NPs are as per the following.
(1) The best microorganisms are chosen. Scientists focused on a few key natural features of microscopic organisms, such as development pace, catalytic workouts, and metabolic pathways, in order to identify the finest up-and-comers. The application expected from the following NPs will help us choose a good option for nanoparticle production. For example, it may be necessary to combine NPs with smaller sizes or explicit shapes, or it may be necessary to combine NPs in less time (Korbekandi et al., 2009; Sreeju et al., 2016).

(2) The biocatalyst state is chosen. The primary operators in nanoparticle combination appear to be bacterial catalysts (biocatalysts). Biocatalysts can be used as whole cells, rough chemicals, and purged catalysts, among other things. The use of societal supernatant or cell concentrate appears to have the potential to speed up the reaction time. In any case, these NPs did not appear to be the long-winded security. Furthermore, the arrival of NPs from the cells was an important consideration that should be considered if intracellularly delivered NPs occur. Bio-reductions appear to account for the majority of the reactions attributed to nanoparticle combination. The coenzymes (e.g., NADH, NADPH, FAD, and so on.) must be given in stoichiometric sums in bio-reduction forms. Because whole cells are expensive, the use of entire cells is preferred because the coenzymes will be utilized during the routes in living complete cells (Korbekandi et al., 2009).

Applications

Nanomedicine is a burgeoning field of study with enormous potential for improving the diagnosis and treatment of human illnesses (Fadeel and Garcia-Bennett, 2010). Scattered nanoparticles are commonly used in nanobiomedicine as fluorescent organic names (Chan and Nie, 1998; Tian et al., 2008), medication and quality conveyance specialists (Pantarotto et al., 2003; Cui et al., 2007), and in applications such as pathogen biodetection (Edelstein et al., 2000), tissue construction (Isla et al., 2003; Ma et al., 2003), tumour obliteration via warming (hyperthermia) (Shinkai et al., 1999), MRI differentiate improvement (Weissleder et al., 1990), and phagokinetic studies (Parak et al., 2002). There have been several audits and research papers published on the usage of nanoparticles in biomedicine (Emerich and Thanos, 2006; Vaidyanathan et al., 2009; Alanazi et al., 2010; Chakravarthy et al., 2010; Rodríguez-Carmona
and Villaverde, 2010; Mahmoudi et al., 2011; Dias et al., 2011; Shen et al., 2011; Piao et al., 2011). While the field of biosynthesized nanoparticles is relatively new, scientists have only recently begun to investigate their potential applications in areas such as directed medication delivery, disease treatment, quality control, and DNA analysis, antibacterial specialists, biosensors, improving response rates, partition science, and MRI. We present a few models to illustrate these uses.

I. Medicine Delivery

A major issue in the construction and development of innovative tranquillize conveyance frameworks is getting the medicines to their target destinations precisely and securely at the right moment to achieve a regulated release and the most beneficial effect. To reach target cells, directed nanocarriers must go across blood-tissue barriers. They must enter target cells via explicit endocytic and transcytotic transport devices to access cytoplasmic destinations despite cell hindrances (Fadeel and Garcia-Bennett, 2010). Nanoparticle medicate transporters can avoid the blood-cerebrum barrier and the tight epithelial junctions of the epidermis, which normally obstruct medicine delivery to the optimum target place, due to their small size. Nanocarriers also have better pharmacokinetics and biodistribution of therapeutic compounds, and so reduce damage by accumulating at the target location (Vaidyanathan et al., 2009). They enhance the dissolvability of hydrophobic mixtures, making them suitable for parenteral administration. Furthermore, they improve the effectiveness of a variety of restorative agents such as peptides and amino acids, oligonucleotides (Emerich and Thanos, 2006).

II. Biosensor

Nanoparticles have intriguing electrical and optical characteristics, and they can be used in biosensors. Bacillus subtilis produced circular selenium nanoparticles with widths ranging from 50 to 400 nm (Xiang et al., 2007). Following one day at room temperature from their mixing, these circular monoclinic Se nanoparticles can be transformed into a highly anisotropic, one-dimensional (1D) trigonal shape. Furthermore, Se nanomaterial gems with a high surface-to-volume proportion, high cement capacity, and biocompatibility were used as improved and established materials for the construction of HRP (horseradish peroxidase) biosensors. Because
of the high adhesive capacity and biocompatibility of Se nanoparticles, these sensors demonstrated significant electro-catalytic movement toward the reduction of H_2O_2.

III. Antibacterial Activity

Silver-based germ-killers have recently been highlighted due to the pervasiveness and increase of microbes resistant to a variety of anti-toxins. The organism *Trichoderma viride* was used to biosynthesize silver nanoparticles (Wang *et al.*, 2010). When fluid silver (Ag+) particles were added to a *T. viride* filtrate, the organization of the particles was reduced, resulting in the formation of very stable AgNPs with a size of 5-40 nm. The nanoparticles were also tested for their increased antibacterial activity using various anti-toxins against Gram-positive and Gram-negative microscopic organisms. In the presence of AgNPs, the antibacterial activities of ampicillin, kanamycin, erythromycin, and chloramphenicol were increased against test microorganisms. Ampicillin's influence on test strains was shown to be the most significant. The results showed that combining anti-infection agents with AgNPs had superior antimicrobial effects, as well as providing useful information for the development of novel antimicrobial operators. Extracellularly delivered silver nanoparticles using *Fusarium oxysporum* can be included into material textures to prevent or restrict contamination with harmful microorganisms such as *Staphylococcus aureus*, according to Dur'an *et al.*, (2007) and colleagues (Fayaz *et al.*, 2010).

II. Conclusion

Nanomedicine is a growing field of study with tremendous potential for improving the diagnosis and treatment of human diseases. Organisms' production of nanoparticles is thought to be ideal, harmless, and naturally satisfying "green science" systems. Microorganisms, such as tiny organisms, yeast, parasites, and actinomycetes, can be divided into internal and extracellular amalgamations based on the location where nanoparticles are formed. The rate of intracellular molecule growth, and therefore the size of the nanoparticles, may be regulated to some extent by adjusting factors such as pH and temperature. For example, pH, temperature, substrate fixation, and presentation time to substrate. Research is as of now did controlling microorganisms at the genomic and proteomic levels. With the ongoing advancement and the continuous endeavors in improving molecule amalgamation productivity and investigating their biomedical applications,
it is cheerful that the usage of these methodologies for an enormous scope and their business applications in medication and medicinal services will occur in the coming years.

References

